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ABSTRACT  

There is a conflict between the ways motions are described in physics and geography classes. 

While non-inertial frames do not feature in official physics curricula, geography texts rely on 

inertial forces in explaining motions of the atmosphere and the seas. Prompted by a survey 

demonstrating that the physical principles behind geography are not understood, this paper 

presents a possible treatment within the limits of high-school mathematics. Through the 

classic example of a merry-go-round, inertial forces are introduced quantitatively, and the 

results are applied in problems related to motions in geography. 

INTRODUCTION 

The choice of reference frame is a central idea in the physics class, while in geography 

they just use their “natural” frame without addressing the issue of reference frame at all. 

Furthermore, that frame is a non-inertial one, whereas we at most switch from one inertial 

frame to another, and may even reproach our students if they dare to say “centrifugal force”. 

When geography is taught in year 9, underlying physical concepts and principles are either 

lacking, or recently acquired knowledge is not yet supported by sufficient experience. 

Explanations given by geography texts are often superficial or even wrong, but the conflict 

exists even in the case of a correct approach. With more background knowledge and expertise 

in problem solving, it is worth revisiting geographic phenomena in physics lessons later on. 

A SURVEY ON PHYSICS BEHIND GEOGRAPHY 

A multiple choice survey with 215 students revealed a serious lack of understanding, with 

no significant difference regarding whether they had completed geography before physics, or 

they had studied both subjects in the same year. The survey encompassed a wide range of 

concepts related to timekeeping, the shape of the Earth, motions of air and the seas, etc. Two 

of the questions involving inertial forces are shown below. 

One question tested the understanding of the nature of such forces: “The oblate shape of 

the rotating Earth is generally explained in terms of the centrifugal force. On the other hand, 

in physics problems dealing with circular motion and rotation, no centrifugal forces were 

considered. What is the difference?” The correct answer of different frames was only chosen 

by 17%. Distractor answers (based on classroom experience, and possible misinterpretations 

of geography texts) would deserve deeper analysis but that is beyond the scope of this paper. 

Another question addressed the perennial myth of the kitchen sink: “Ivan in Moscow and 

Pedro in Buenos Aires each fill the kitchen sink with water and remove the stopper. The water 

drains with a whirl. What will they observe?” Only 10% gave the correct answer. The most 

popular distractor (56%) was the one stating that water whirls counter-clockwise for Ivan and 

clockwise for Pedro. This suggests that students learn their geography regarding cyclones, and 

apply it without criticism to anything that rotates. Just like Sylvester Stallone in Escape Plan, 

observing the toilet and concluding that the prison is on the southern hemisphere. 
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Fig.1. The four characters 

The myth is reinforced by “demonstrations” of the Coriolis force performed to tourists at 

the Equator, showing how draining water whirls one way or the other if the apparatus is 

moved a few metres to the north or to the south. They all cheat since the horizontal Coriolis 

force is zero at the Equator and varies as the sine of the angle of latitude. See [1] for an 

amateur video to observe angular momentum created by pouring water in a sink from the 

appropriate side. Tourists give credit to the presentation, although deception is quite apparent. 

It is instructive to reproduce the “demonstration” in class. (Just draw a random line on the 

floor and call it the Equator.) 

INTRODUCING INERTIAL FORCES 

The merry-go-round is a standard illustration of a rotating reference frame. However, high-

school level resources normally offer conceptual treatment only. The approach demonstrated 

here is quantitative, without resorting to any vector calculus or even a vectorial product. Since 

it applies a lot of the dynamics taught in the regular curriculum, it can be used as a kind of 

synthesis, adding a little extra at the end of the year. 

The programme features a rotating observer A whose reference frame is attached to the 

centre and rotates along with the roundabout, an inertial observer B, and two further char-

acters: a lizard running along the rim, and a sparrow scared away and flying radially (Fig. 1). 

Numerical values are calculated in each case, to give an idea of how various forces or 

accelerations compare to each other.  

Suppose the mass of A is 20 kg, the radius of the carousel is 

1.5 m, and it completes a revolution in 3 s. As seen by B, the 

speed of A is then v = 3.14 m/s, and she is acted on by a net 

force of mω
2
r = 132 N. It is important for students to 

understand that this is the inward push by the merry-go-round 

seat, and since it is a real force exerted by a real object, the 

same force must be present in A’s frame, too. Since A is in 

equilibrium in A’s frame, that raises the need for an extra 

outward force of magnitude mω
2
r, so the centrifugal force is 

introduced. 

Next, the motion of the lizard is considered in each frame. Assume its mass is 20 g and it 

runs at a speed of u = 0.50 m/s along the rim. Again, the observers must agree on the force 

exerted by the merry-go-round. That constitutes the net force for observer B (Fig. 2, top left): 
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For rotating observer A, however, the speed of circular motion is only 0.50 m/s, and the net 

force is only 0.003N, so outward forces need to be added to the merry-go-round force of 

0.177 N to produce a resultant of 0.003N. One such force is the centrifugal force of mω
2
r that 

is calculated to be 0.132 N, but that alone will not produce the required resultant. Yet another 

outward force of N 042.0132.0177.0003.0   is needed. What is the physical law behind 

that? Let us examine the forces and accelerations algebraically. Expand the square in (1): 
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The last term of (2) represents the net force for A, a resultant of real and inertial forces: 
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The first term of (3) is the inward real force of the seat, the second term is the centrifugal 

force outwards, and the last term is the missing force, also outwards this time. Thus an object 

moving tangentially at speed u is acted on by a force 2mvu/r = mu∙2ω. This is the Coriolis 

force, and substitution of numerical data yields the magnitude of 0.42 N. 

Figure 2 below summarizes the forces in the two frames. The direction of the Coriolis 

force is the opposite when the lizard is running the other way. A special case of this situation 

occurs when A observes the motion of B, who stands on the ground, a distance R from the 

centre. According to A, he is moving in a circle at a tangential speed of u = –ωR, that is, his 

(net) acceleration is a = ω
2
R. Since there is no real horizontal force exerted by other objects 

on him, this acceleration is caused by the two kinds of inertial forces: the outward centrifugal 

acceleration ω
2
R, and an inward Coriolis acceleration of 2ωu = 2ω

2
R. So the resultant is  

a = 2ω
2
R – ω

2
R = ω

2
R inwards. 

 

Fig.2. Forces on an object moving tangentially.  

Left panel: in the direction of rotation, Right panel: opposite to the direction of rotation 

So far, we have investigated objects in tangential motion and radial forces acting on them. 

The motion of the sparrow flying away from the centre is uniform and radial for B, but rather 

complex from the point of view of A. Radial acceleration is zero in A’s frame, too, (like for 

the motion of B in the previous example,) but the tangential speed is increasing in proportion 

to the distance, so this time there is a tangential force, too. Figure 3 (right panel) shows the 

constant radial speed and increasing tangential speed of the sparrow at equal intervals of Δt. 

If the distance from the centre increases by Δr in a time Δt, then v = Δr/Δt. In a short time 

Δt, acceleration can be considered uniform, angular displacement increases by ωΔt, which 

means a distance of ωΔt·Δr covered in a direction perpendicular to the radius. That is, 
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The same formula is found to apply to the sideways force due to radial motion as to the 

sideways force due to tangential motion. Hence, it applies to every motion in a plane 

perpendicular to the rotation axis. The treatment of the Coriolis force is completed. 
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Fig.3. The motion of the sparrow as it appears to B (left panel) and A (right panel) 

APPLICATIONS ON THE ROTATING EARTH 

The selection below gives some outlined and some worked examples of quantitative 

exercises related to geography. Note that the angular speed of the Earth is Ω = 7.292∙10
–5

/s.  

Exercise 1. Free fall acceleration is the resultant of gravitational acceleration towards the 

centre and centrifugal acceleration away from the axis. Thus, g is found to be 9.78 ms
–2

 at the 

Equator. The value of g influences sports results: for example, if an athlete can jump 8.00 

metres at the poles then, assuming the same initial speed and angle, his jump is calculated to 

be 4.04 m at at the Equator. 

Exercise 2. Budapest lies at a latitude of N47.5°. Find the magnitude and direction of the 

centrifugal acceleration and of the free fall acceleration at Budapest. Calculate with the 

average radius of the Earth, R = 6370 km. 

Solution. 
2
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directed away from the axis of rotation. The magnitude of the vector sum (Fig. 4) with the 

gravitational acceleration towards the centre is obtained by using rectangular components: 
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Fig.4. The direction of free fall acceleration 

Its direction is somewhat to the south of towards the centre. This is what “down” means; 

the flattened shape of the Earth formed to make the surface perpendicular to this direction. 

Exercise 3. To link with the merry-go-round example, the Coriolis force should first be 

investigated at the Equator. Suppose wind is blowing at a speed of u = 20 m/s towards the 

west at the Equator. The Coriolis acceleration is found to be 2Ωu = 2.9∙10
–3

 ms
–2

, directed 

vertically downwards. Note that its direction is radial, that is why the whirling water 

“demonstrations” are hoaxes. 



Carousels to Coriolis 

123 

 

Exercise 4. At other latitudes the Coriolis force has a horizontal component, too. Since we 

consider motions in a plane perpendicular to the local vertical rather than to the axis, the 

situation is more complex than the carousel case. High-school texts normally refer 

qualitatively to Foucault’s pendulum as demonstration, but they do not explain the value of 

the local angular speed. By a high-school level adaptation of the explanation (based on the 

transport of vectors on curved surfaces) offered by some advanced texts (e.g. [2]), the use of 

angular velocity vector and components may be avoided: Students know that the surface of a 

cone unfolds in a plane. Consider the cone touching the globe along the φ = N48.8° parallel of 

Paris (Figure 5). In one day, while the Earth turns through 2π, Paris (point P) only turns in the 

unfolded plane by an angle of 2π·sinφ. Hence the local angular speed is sinφ times that of the 

Earth: 

 s/1049.58.48sin1029.7sin 55      

which means 11.3° per hour. It would be 15° at the poles and zero at the Equator. 

 
Fig.5. Demonstration of turning in a plane perpendicular to the local vertical 

Exercise 5. (a) The mystery of the kitchen sink unravelled at last. Calculate the accelera-

tion of a bread crumb in Budapest, circling at a radius of 2 cm, at a speed of 10 cm/s. What 

part of the acceleration is due to the Coriolis force? (b) Answer the same question for 

Jupiter’s great red spot, a giant whirlwind at S22° latitude, angular size 25° by 12°. Wind 

speed is in the order of 100 m/s. The radius of Jupiter is about 72 000 km, and it rotates fast, 

completing a revolution in 9.8 hours. (Based on [3].) 

Solution. (a) 
2
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 255 m/s1015.47sin)103.7(1.02sin2   vΩaC .  

The effect is very small compared to other effects responsible for the motion, such as the 

geometry of the sink or the initial angular momentum that the water happens to have. 

(b) 1° on Jupiter corresponds to 2Rπ/360 = 1.2∙10
6
 m, so the roughly 9° radius of the spot 

means an acceleration of about 9·10
−4

 ms
−2

, while the Coriolis acceleration is found to be 

about 1·10
−4

 ms
−2

. It is comparable to the net acceleration, so the Coriolis force does play a 

role in the formation of this persisting storm. 

Exercise 6. (a) A golfer in Scotland, N55° latitude, can hit the ball to 300 m at a 45° angle. 

(b) An artillery missile is launched at 700 m/s. Does the deviation owing to the Coriolis force 

need to be considered? (Calculate the sideways deflection owing to the Coriolis force.) 

Solution. (a) Using the known formulae of projectile flight, a range of 300 m implies an 

initial speed of 54 m/s, and a flight time of 8.7 s. Hence 

 cm 177.845cos5455sin103.7
2

)cossin2(
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The deflection is probably negligible compared to other disturbing effects like wind. 

(b) The range is now 50 km, and the sideways deflection is about 300 m. This time, the 

effect is significant, it has to be considered in aiming the missile. 
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Exercise 7. What happens if a hockey puck is hit in a perfectly frictionless ice rink? Not 

straight line motion! The net force on the puck is not zero in the rotating reference frame of 

the Earth. If the ice is perfectly horizontal, that is, perpendicular to the local vertical, all other 

forces will cancel, leaving the horizontal Coriolis force, a sideways force as resultant. That 

leads to circular motion.  

Exercise 8. How fast should we hit the puck in Budapest so that the circle fits in an ice 

rink 30 m wide? (Based on [3].) 

Solution. 
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Quite slow. For speeds in the order of a metre per second, we need r = 9.3 km in Budapest 

(39 km at 10°, and 7.0 km at 80° latitude). Such large ice rinks we do not have, but nature 

realizes this kind of motion. Figure7 below shows the positions of a buoy in the Baltic sea, 

southeast of Stockholm at N57° latitude [4],[5]. 

 
Fig.7. A buoy at sea executing inertial motion [3], [4] 

CONCLUSION 

Quantitative treatment (algebraically as well as with numerical magnitudes) helped decide 

whether inertial forces should be considered or can be ignored in a particular situation. 

Application to geography-related problems supports a deeper understanding in both subjects. 

As indicated by the results of a short quiz, the investigation of the same motion from different 

points of view made students more conscious of different reference frames.  
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