Implementing inquiry in teaching electricity

Inquiry Based Learning

- ▶ Developed in the 60s
- Constructivist learning theory

"Inquiry-based learning (also enquiry-based learning in <u>British English</u>)^[1] starts by posing questions, problems or scenarios—rather than simply presenting established facts or portraying a smooth path to knowledge." Wikipedia

Why do we see IBL everywhere?

Inquiry based learning is trendy

- ▶ Google:
 - ▶ 138 000 000 hit for IBL
 - ▶ 26 500 hit in Google Scholar just in 2015
- ► European Schoolnet
 - ▶Several projects:
 - ▶<u>Fibonacci</u>, <u>Mascil</u>, <u>Temi</u>, <u>Sails</u> and others
 - ▶ Resources: <u>scientix.eu</u>

Why do we see IBL everywhere?

IBL for everyone!

What is the inquiry cycle?

How to start with IBL?

- Progessively
- ▶ Facts or Methods
- ▶ Partition of the IBL circle

Black-Box problem

Circuit: http://www.falstad.com/circuit/

Step I.- Analyze

$$I.R_1 + R_2 = 100 \Omega$$

$$II.R_3 + R_1 = 200 \Omega$$

$$R_2 = 100 \Omega - R_1$$

$$R_3 = 200 \Omega - R_1$$

$$0 \le R_1 \le 100 \Omega$$

Step II. - Predict

$$I_0 = \frac{U}{R_1 + \frac{R_3 \cdot R_2}{R_3 + R_2}}$$

Step III. - Check

In the classroom

- ▶ 10th grade
- One class for interested students
- ► One "normal" class
- ► After introducing
 - ▶ Current, Voltage
 - ▶ Ohm's law
 - ▶ Paralel and linear connection

In the classroom

- Analyzing
- Predicting
- Checking

- No full theoretical solution
- Usually 1 sometimes 2 numerical modell
- Hard to rethink when checking destroys the theory

Results (?)

Thank you for your attention!

- ► Zsolt Vicze
 - ▶Balassi Bálint Grammar School Budapest
 - Scientix Deputy Ambassador
 - ►Zsolt.vicze@gmail.com
 - https://goo.gl/WTBYuu